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ABSTRACT 
 
High Frequency (HF) radar backscatter instruments are under 

development and testing in the marine science and defense science communities 

for their abilities to remotely sense surface parameters in the coastal ocean over 

large areas.  In the Navy context, the systems provide real-time mapping of 

ocean surface currents and waves critical to characterization and forecasting of 

the battlespace environment. In this study, HF radar, aircraft and satellite 

information were used to investigate and describe surface current in Monterey 

Bay, California, for a period of ten months, from June 01st, 2003 to March 31st, 

2004. A network of five CODAR-type HF radar instruments measured hourly 

surface currents over the bay. The measurements were averaged over one-hour 

intervals and total surface velocities were mapped on a grid in the Monterey Bay. 

From the M1 Buoy located in the middle of the bay, an uninterrupted time series 

of wind intensity and direction was obtained for the whole period. Major upwelling 

events were observed during the period of June 14 to June 27, July 4 to July 19, 

August 8 to August 18 and other upwelling events were observed until late 

October. These periods of upwelling favorable winds are common during 

summer with durations of 10 to 20 days. Often they are interrupted by periods of 

relaxation state of just a few days as the winds veer to the northwest or 

northeast. Cyclonic circulation cells are developed on shore during upwelling 

conditions and an anticyclonic circulation in the middle of the bay is observed 

when the wind shifts to the southwest producing a strong flow out of the bay 

close to the coastline off Point Piños. Downwelling conditions are much common 

less than upwelling, with occurrences during winter and early fall storms with 

events lasting between two to five days.  When the wind blows to the northeast 

with an intensity of 4 m/s or more for more than 12 hours, a well developed 

anticyclonic gyre forms in the middle of the bay. This is associated with a strong 

current, 35 to 40 cm/s, which flushes out in the southern part of the bay close to 

the coast off Point Piños. This flow reverses when the winds veer to the 

southwest and enter into the Bay with less intensity. 
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I. INTRODUCTION  

A. BACKGROUND  
1. Large-Scale Circulation  
The dynamics of the coast of California is particularly difficult because of 

the large-scale, sub-tropical oceanic circulation in the North Pacific Ocean, which 

is dominated by the clockwise ocean gyre driven by the anticyclonic atmospheric. 

Several circulations of counter flow are present in the area. The Inshore 

Countercurrent, (IC), Davison Current (DC) Southern California Countercurrent 

(SSC), Southern California Eddy (SCE) and California Undercurrent (CU) form 

finally the California Current System (CCS). The CCS is an eastern boundary 

current system which extends from the Strait of Juan de Fuca southward to the 

tip of Baja California Peninsula. It is an offshore (800-900Km), near-surface 

(0~300 m) equatorialward flow with low salinity, relatively low temperature and 

with speeds of about 10 cm s-1. Seasonal variations in alongshore wind stress, 

coastline irregularities, bottom topography, temperature and salinity variation 

have been shown to be the mechanism responsible for the observed large-scale 

structure within the CCS (Hickey, 1998). 

Along the coast north of Pt. Reyes, the alongshore wind stress is 

persistently from the north and does not reverse direction, while along the 

Mendocino coast and further north the direction of the wind stress changes 

seasonally (Strub et al. 1987). During late fall and winter, the winds become 

more variable as storms periodically reverse the wind direction. Maximum 

seasonal wind stress at 350 N occurs from May to June whereas at 390 N the 

maximum wind stress occurs in July. The seasonal variation in wind patterns has 

several effects: when winds are strong from the northwest between March and 

September along the central California coast, the wind-driven (Ekman) transport 

of the waters between the surface and about 50 m has an offshore component. 

The sea surface is lowest along the coast and tilts upward by about 20 cm across 

the width of the California Current (1000 km). Deeper upwelled waters, which 

flow shoreward and upward beneath the Ekman layer, replace surface waters 
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moved seaward. Upwelling speeds may reach 1 m/day or greater (Breaker and 

Mooers 1986), under favorable wind conditions and from depths as great as 200 

m (Smith 1968).   

Within the coastal regime, the sea surface flow undergoes a seasonal 

reversal during late fall and winter. The direction is primarily poleward while the 

equatorward flow dominates during the spring and summer. The equatorward 

flow is coupled with intensification of northwesterly winds that generally parallel 

the central California coastline. This pressure gradient begins to form and to 

strengthen in the spring. The sudden strengthening of the northwesterly winds, 

usually from March to May, may result in the “spring transition” in which upwelling 

commences and local sea surface temperature fall by as much as 50 C within a 

few days. Surface waters are advected offshore and the equatorward 

geostrophic flow is established after baroclinic adjustment. During late fall, the 

North Pacific High weakens and migrates southward and the thermal low 

disappears. The surface flow reverses to poleward and can be regarded as the 

surface signature of the California Undercurrent (CU), although some 

investigators refer to this poleward current as the Davison Current, mentioned 

previously. 

Satellite imagery, field studies using Langarian drifters, and recent 

numerical modeling suggest the existence of numerous large-scale (50-300 km), 

and long-lived (20-40 days) jets and meanders in the region offshore of the 

northern California Shelf (Hickey, 1998).  

 

2. Monterey Bay Circulation 
Monterey Bay is one of several large bays located on the west coast of the 

United States about 100 km south of San Francisco. The coastline forms a semi-

enclosed bay with both a shallow narrow shelf and the Monterey Canyon, with 

depths exceeding 2000 m. The regional circulation in the Monterey Bay area is 

tightly coupled to the CCS and highly correlated to the coastal upwelling. 

Understanding the variability of the surface transport of Monterey Bay and at the 
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same time identifying the transport pathway is important for addressing both 

practical problems as well as fundamental research questions regarding the 

coastal ocean. 

The surface current around the bay has strong variability that is well 

separated in terms of timescales. It seems that for longer timescales, that is, for 

periods of weeks and even months, mesoscale patterns evolve with major wind 

reversals and the proximity of mesoscale eddies (Paduan and Rosenfeld 1996). 

At shorter timescales, current fluctuations are dominated by semidiurnal tidal 

forcing and diurnal wind (seabreeze) forcing (Foster 1993; Petruncio 1993). 

Previous studies (Ramp et al.1997; Collins et al.1996) have shown that currents 

over the slope of Central California are dominated by long-period fluctuations. 

These fluctuations have generally been associated with the offshore eddy and 

meander field. 

Three different seasonal faces were described by Skogsberg (1936) 

during an extensive oceanography study of Monterey Bay between 1929 and 

1933. The first of these seasonal faces is called the “upwelling period” and is 

driven by upwelling-favorable winds that extend from mid-February until August-

September. Along the Central California coast, winds from the northwest 

associated with the subtropical high pressure cells produce coastal upwelling, 

which in turn influences the coastal circulation and thermal structure strongly. In 

the Monterey area, coastal upwelling usually occurs between March and October 

(Breaker and Broenkow 1994). Upwelling centers in the Monterey area are 

located near Point Año Nuevo and Point Sur (Paduan and Rosenfeld 1996). 

The “oceanic period” extends from late summer to early fall. Skogsberg 

(1936) attributed this period to the onshore movement of oceanic waters 

associated with the CC. During this period, the North Pacific High weakens, wind 

stress relaxes, and the cool upwelled waters begin to sink and are replaced by 

warmer surface water from offshore. Coastal sea surface temperatures rise to 

their highest seasonal values and strong vertical temperatures gradients form 

(Breaker et al. 1994). Rosenfeld et al. (1994) named this period as a “relaxation 
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state” in which the Monterey area is characterized by rapid onshore advection of 

warm oceanic water combined with surface warming. 

Finally, the “Davison Current Period” goes from December to early 

February, coinciding with the local occurrence of the northward DC. Strong 

southerly winds generate onshore Ekman transport, resulting in a general rise in 

the sea level, which in turn, causes downwelling and offshore cross-shelf flow 

below the Ekman layer. 

Rosenfeld et al. (1994) also focused on the Monterey Bay, and observed 

the development of a warm, fresh anticyclonic eddy at the entrance or just to the 

south of the bay, when upwelling immediately followed a relaxation event. 

Satellite observations suggest that a meander or a warm-core eddy, 50 to 100 

Km in diameter, may be present occasionally just west of Monterey Bay 

(Breaker, et al. 1994). 

 
3. Wind Pattern 
The wind along the west coast of the United States is governed primarily 

by the location of the Eastern Pacific Subtropical High, which dominates the 

large-scale wind field during summer but reverses direction north of San 

Francisco during the winter. Equatorward wind stress occurs during the spring in 

southern California and in the northern area during the summer and minimum 

equatorward wind stress occurs during late fall. Wind intensity is proportional to 

the barometric pressure difference between the North Pacific High and the 

thermal low pressure centered in southern Nevada and California. 

A ten-year time series of the Monterey Bay seasonal, interannual and 

long-term wind fluctuations were collected between 1989 and 1998 by the 

Monterey Bay Aquarium Research Institute MBARI, including data from the 1992 

to 1993 and 1997 to 1998 El Niño events. The data were collected from ship 

surveys, and supplemented by moored observations of current and wind, as well 

as satellite observations of temperature and ocean color providing spatial 

coverage. The results indicated that daily winds offshore of Monterey Bay are 
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predominantly from the northwest at 5 to 10 m/s, with interruptions primarily in 

winter (MBARI-BOG: 10 year study from Monterey Bay, Seasonal Patterns). 

Alongshore-daily winds stress is thus predominantly equatorward with reversals 

in winter. The average year of alongshore wind stress shows intermittent positive 

(poleward) stresses from December to March, minimum negative (equatorward) 

stress in April and June, and moderate negative stresses from July to November. 

 
4. Upwelling  
In general, coastal upwelling occurs along eastern ocean margins when 

equatorward winds act in combination with the Coriolis force to move surface 

waters offshore, drawing deeper water to the surface. This “upwelled” water 

occurs as a cool band along the coast typically tens of kilometers broad, 

separated from warmer waters offshore. The coastal ocean off western North 

America has received considerable oceanographic research because of the 

fisheries supported by the upwelling processes and because of its proximity to 

large human populations. The oceanography of this region is strongly influenced 

by the process of coastal upwelling. In general terms, in the northeast Pacific 

Ocean coastal upwelling occurs seasonally. 

In the Monterey Bay, which is the site of the present study, the available 

information on currents and upwelling indicates a complex and sometimes 

contradictory picture of the structure in this region. In 1989, MBARI began an 

intensive study of the coastal upwelling system of central California (Chavez 

1997) incorporating biweekly to monthly ship expeditions together with 

continuous observations from moored platforms. In general terms, the Monterey 

Bay regional circulation can be described in two distinct hydrographic states: 

Upwelling state (1-3 weeks) and Relaxation state (3-6 days). These two periods 

are related to the prevailing wind patterns. In summer, which is the upwelling 

period, the typical circulation in the bay consists of an upwelling front originating 

from Pt. Año Nuevo, a cyclonic circulation inshore of the front and another 

upwelling region off Pt. Sur. When the wind relaxes, the upwelling reduces and 

the offshore eddy circulation, which is assumed to be part of the CC meandering 
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flow system, flows into the bay and interacts with the flow over the shelf. 

Rosenfeld et al. (1994) investigated the upwelling center off Point Año Nuevo 

north of the bay. They suggested that the surface waters enter the Monterey Bay 

principally from the north, while Broenkow and Smethie (1978) suggest the flow 

into the bay is often from the south. Recently AVHRR satellite images often 

reveal a tongue of cool water extending across the mouth of the bay. Other 

AVHRR images in April 1993 revealed two symmetrical, apparently anticyclonic 

eddies southwest of San Francisco and Monterey Bay with cool coastal waters 

near Point Año Nuevo and Point Sur.  

When upwelling ceases, sometimes abruptly, at the end of summer 

(typically August, September) the sea level along the coast and inside the 

Monterey Bay rises and the California Current slows. Sea surface temperatures 

along the coast may rise markedly. Later in the year (typically November) when 

winter storms bring occasional strong northward winds, Ekman transport is 

shoreward, and in places the surface current becomes northward. This is the 

Davison Current or the surfacing of the California Undercurrent. Rosenfeld et al. 

(1994) emphasized that wind-driven upwelling does not occur within Monterey 

Bay. That view agrees with earlier work in the bay (Broenkow and Smethie, 

1978). Some of the earlier studies on Monterey Bay circulation are summarized 

in Table 1. 
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 Upwelling State Relaxed State References 

Temporal Scale 1-2 weeks 3-6 days  

 Bifurcating 
upwelling frontal 
system from Pt. 
Año Nuevo 

? 
Rosenfeld et al. 
(1994); Ramp et al. 
(1997); Rosenfeld et 
al. (1995) 

Features 

Anticyclonic eddy 
on the offshore 
side of the 
offshore upwelling 
filament 

Anticyclonic eddy 

moves onshore 
Tracy (1990) 

 Cyclonic 
Circulation in the 
Bay 

Cyclonic reduces 

in extent 

Tracy (1990) 

 Bifurcating 
Upwelling frontal 
system from Pt. 
Sur 

? 
Traganza et al. 
(1981), Tisch and 
Ramp (1997) and 
others 

 
Table 1.   Circulation Features in the Monterey Bay Region during 

 Upwelling and Relaxed Periods. (From MBARI-BOG: Ten-year 
 Study from Monterey Bay). 
 
Table 1 shows the circulation features in the Monterey Bay with emphasis 

on the upwelling and relaxation periods. Two areas of coastal upwelling are 

summarized in the table: one near Point Año Nuevo (Rosenfeld et al. 1994) and 

a stronger upwelling locus south of Point Sur (Traganza et AL. 1981). These 

upwelling areas are readily observed in AVHRR satellite images as cool areas.  

 

B. HIGH-FREQUENCY RADAR 
1. Characteristics 
High-frequency (HF) radio formally spans the band 3 to 30 MHz of the 

electromagnetic spectrum (with wavelengths between 10 meters at the upper 

end and 100 meters at the lower end). Throughout the years, oceanography has 

been exploiting many different portions of the electromagnetic spectrum to build 

instruments to extract information about the ocean surface, such as altimeters 



and scatterometers. There are several types of transmission paths for different 

frequencies, such as space waves, ground waves, and sky waves. The latter is 

used for HF radar, in oceanographic applications. 

HF radars used in oceanographic applications are surface-based that 

measure backscatter from the ocean surface on spatial and temporal scales. 

They are usually located on the coast measuring out from 20 to 200 km 

depending on the radio wavelength and parameter being measured. The way the 

systems work can be summarized by the following discussion taken from the 

Codar Ocean Sensors, Ltd. web site (http://www.codaros.com): 

When the radar signal hits ocean waves that are 3 to 50 meters 
long (wavelength) that signal scatters in many directions. In this 
way, the surface can act like a large diffraction surface. Significant 
radar signal will return directly to its source only when the radar 
signal scatters off a wave that is exactly half the transmitted signal 
wavelength, and that wave is traveling in a radial path either directly 
away from or toward the radar. The scattered radar electromagnetic 
waves add coherently, resulting in a strong return of energy at a 
very precise wavelength. This is known as the Bragg principle and 
the phenomenon ‘Bragg scattering.’ 

The basic mechanism of a HF radar system is the analysis of this 

backscattered radio wave. HF radar systems work very much like a radio station 

in that they emit a radio signal. Although a radio station does not monitor the 

signal that is scattered back to the station, a HF radar site uses this 

backscattered radio wave to calculate surface currents. Resonant Bragg 

Scattering basically amplifies the scattered signal directed toward the receiver. 

Resonance will only occur for a particular signal wavelength: 

2cos( )
tλλ
θ

=
 

where λ  = Wavelength of surface waves; tλ  = Wavelength of transmitted Signal 

and θ  = Incident angle of the Signal.    
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Since the antennas are very close to the sea level, the incident angle of 

the signal is assumed to be zero. This assumption reduces the above equation 

to: 

2
tλλ =  

The second equation states that a signal scattered off a wave and back 

toward the antenna will be in phase with a signal that traveled to the next wave 

(1/2 transmit wavelength further) and returned to the original wave (another 1/2 

transmit wavelength). Therefore, the signal that traveled a whole wavelength 

further will line up with the first signal. When all of the scattered signals directed 

toward the receiver are lined up, each signal is added to the other and results in 

a stronger signal. All the HF radar systems has to do is send out a signal that is 

twice the wavelength of an ocean wave and the scattered signal directed back to 

the receiver will be amplified. Because the ocean surface is continually 

composed of a spectrum of waves, the converse is also true: for any HF 

broadcast frequency, Bragg-resonant waves will be selected. 

All of the above equations assume that the surface waves are not moving. 

In fact, the waves are moving and a moving wave will change the frequency of 

the return signal (Doppler shift). The frequency of a signal scattered by a moving 

wave will be shifted depending on the velocity of the surface wave. If the wave is 

approaching the receiver, the return frequency increases. On the other hand, a 

wave moving away from the receiver will return a lower frequency. Therefore the 

shift will be positive if the wave is moving toward the receiver and negative if the 

wave is moving away from the receiver. The following equation is used to 

measure the magnitude of the frequency shift: 

2 R

t

Vf
λ

∆ =  

where Frequency shift; f∆ = RV =Radial Component of Velocity. 
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Using linear wave theory one can calculate the velocity of the surface 

waves. The solution to the above equation will give the size of the Doppler shift 

for an approaching and receding wave. Note that the magnitudes will be the 

same with the exception of the sign. 

 It is important to keep the following in mind: a single radar site is capable 

of detecting only the component of flow traveling toward or away from the site for 

a given look angle. A stable estimate requires scattering from hundreds of wave 

crests plus an ensemble averaging of the spectral returns, which sets the space-

time resolution of the instruments. The precision of the system is limited by the 

frequency resolution of the Doppler spectrum and is typically 2-5 cm s-1. Finally, 

the accuracy is controlled by numerous factors, such as signal-to-noise ratio, 

geometry, the position of the antennas, the geography of the location, etc.  

What makes HF Radar particularly useful for current mapping is that the 

ocean waves associated with high frequency wavelengths are always present. 

Because we know the wavelength of the wave, we also know its speed very 

precisely from the deep-water dispersion relation. The returning signal exhibits a 

Doppler-frequency shift. In the absence of ocean currents, the Doppler frequency 

shift would always arrive at a known position in the frequency spectrum. But the 

observed Doppler-frequency shift does not match up exactly with the theoretical 

wave speed. The Doppler-frequency shift includes the theoretical speed of the 

wave plus the influence of the underlying ocean current on the wave velocity in a 

radial path (away from or toward the radar). The effective depth of the ocean 

current influence on these waves depends upon the wave’s period or length. The 

current influencing the Bragg waves falls within the upper meter of the water 

column (or upper 2.5 meters when transmitting between 4 to 6 MHz; Steward 

and Joy 1974). So, once the known theoretical wave speed is subtracted from 

the Doppler information, a radial velocity component of surface current is 

determined. By looking at the same patch of water using radars located at two or 

more different viewing angles, the surface current radial velocity components can 

be summed to determine the total surface current velocity vector. 
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2. CODAR 
CODAR, which stands for Coastal Ocean Dynamics Applications Radar, 

uses the basic scattering principle for all existing HF radar. The historical timeline 

of the association of HF radar and its application in oceanography taken from the 

Codar Ocean Sensors, Ltd. web site is as follows: 

1955: Crombie discovers experimentally that Bragg scatter 
produces strong HF sea echo return to first order (Crombie, 1955). 
1968-1972: Barrick derives/publishes quantitative solutions for first 
and second order sea scatter (Barrick, 1968-1972). 1969-1973: 
Barrick at NOAA (U.S. Dept of Commerce), with Scripps & 
Stanford, use HF phased arrays on San Clemente Island to validate 
theories behind HF current and wave measurements. 1973-1983: 
Barrick leads team at NOAA to develop more practical alternatives 
to large HF phased arrays for coastal current and wave monitoring 
(Lipa and Barrick, 1983). Patents were filed and over 100 papers 
published on CODAR concepts within government. 

Nowadays, distinct differences are found in the antenna configurations 

that transmit and receive the electromagnetic signal. The antenna system utilized 

by CODAR consist of crossed loops and a whip for receiving and a whip for 

transmitting radio pulses (Barrick et al., 1977). This type of antenna is used for 

deployment in populated and rocky coastal areas. The omnidirectional 

characteristic of the cross-loop whip combination makes it possible to scan wider 

ocean sectors. These are the types of antennas used in Monterey Bay (Paduan 

and Rosenfeld, 1996; Paduan and Cook, 1997).  

 

3. Uses 
HF radar measurements have been employed around Monterey Bay since 

1992. The main difference between the oceanographic radar and other radar, for 

example those intended to track ships or aircraft, is the operating frequency. 

Whereas most of the military radars operate at microwave frequencies 

(wavelength on the order of centimeters), radar uses for oceanographic purposes 

operate in the HF range with wavelength of tens of meters. This is a crucial issue 

because the ocean waves interact resonantly with HF radar signals.  
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With the beginning of operation of HF radars in coastal zones some forty 

years ago and the application of near-shore current mapping about twenty years 

ago, it became possible to observe large region of the coastal ocean 

simultaneously and to construct maps of surface currents, waves, and wind 

direction. 

The uses of the system basically depend on the configuration and the 

array of the antennas. Horizontal resolution can be from tens to hundred of 

kilometers. Another characteristic of this shore-based remote sensing technology 

is that the two-dimensional observations can be collected continuously for 

relatively low cost compared with others type of systems. 

 
 



13 

II. DATA COLLECTION 

A. MOORED 
1. Wind data 
M1 Buoy: The importance of time series in oceanographic research is 

known. Spatial and temporal wind information will need to come from mooring 

and drifters with arrays of in-situ sensors. Realizing that advances in ocean 

sciences are limited by the lack of instrumentation and systems capable of 

collecting these time series, the Monterey Bay Aquarium Research Institute 

(MBARI) established the development of a new set of control, electronics, and 

software that would allow for the collection, storage and telemetry of data from 

any of a wide range of scientific instrumentation. The controller name for putting 

this to work is the Ocean Acquisition System for Interdisciplinary Science 

(OASIS). 

Three different sets of platforms have been deployed by OASIS. For the 

purpose of this work, we focus on the moored configuration. Buoys with the 

measurement instrumentation were first deployed at sites M1 and M2 in the 

waters adjacent to Monterey Bay in August 1989. The sites were selected 

primarily for scientific reasons and since then the moorings have survived well. 

The M1 position is the primarily location for the purpose of data collection for this 

project. The location of the buoy is shown in Figure 1. The data utilized from this 

platform includes primarily wind data from June 1, 2003 through March 31, 2004. 

 
2. Ocean Data 
Bottom Fixed ADCP: These instruments belong to the University of 

California, Santa Cruz (UCSC) and are part of their program entitled  

Partnerships for Interdisciplinary Studies of Coastal Oceans 

http://www.piscoweb.org). The sites are located in relatively shallow waters in the 

inner shelf. From the three sites, two were analyzed for the purpose of this study: 

Terrace Point and Hopkins Marine Station. Sand Hill Bluff, which is the third one, 

is not included as it is too far from the bay.  
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These instruments are bottom-mounted RDI 600 kHz Workhorse Sentinel 

ADCP’s. The ADCP’s sampling interval was configured to be two minutes. The 

timing was set as Julian days defined as Julian days since 12 a.m. January 1, 

2000, Pacific Standard Time. Matlab codes were used to convert between 

calendar dates and the UCSC PISCO Julian days. The raw ADCP data was 

converted to text files using RDI’s “BBList” program. This program allows for both 

a tabular display of the data and a conversion to a text format. Because there are 

too many columns of data to allow the export of just one ASCII file per 

deployment, two text files are created for each ADCP deployment. In the format 

there are always 22 ADCP “bins” exported. Hourly averages of each ADCP 

deployment are also created with site- specific Matlab codes. Because some of 

the deployments do not have times falling on even minutes, some hourly times 

do not fall precisely on the hour. Also in the hourly data, bins within six percent of 

the water-depth of the water’s surface, or higher, as determined by a maximum in 

acoustic intensity “echo,” are set to NaN (not a number). Once the data is 

converted to a text format, it is loaded into Matlab where a minimal amount of 

processing is done and it is converted into a binary version. Then a set of 

variables are saved to the original raw file name, but with a MAT extension. For 

this study, the following are the variables used: 

• “Julday”: UCSC PISCO Julian day (from 00:00 hrs of 01 January, 

2000) 

• “eU”: matrix holding eastward velocities of all 22 bins, in cm/s 

• “eV”: matrix holding northward velocities of all 22 bins, in cm/s.  

The water depth at the location of the instruments is shown in Table 3 of 

Chapter III, Method and Data Analysis. 

 

 

 

 



 
Figure 1.   Location of Fixed-bottom ADCPs at Hopkins and Terrace Point 

 and the M1 Buoy (*). 
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B. HF RADAR DATA 
1. Temporal Coverage  
Hourly surface currents obtained from HF Radar measurements in 

Monterey Bay were mapped for the period of July 31, 2003, through March 31, 

2004. These HF radar data were obtained from five HF antennas located along 

the Monterey Bay. The fifth antenna shown in Figure 2, is located in Point Sur, 

south of Monterey Bay and also helps with radials primarily in the southern part 

of the bay. Because this antenna is far from the bay, the spacing of the grid was 

set at five kilometers, in order to obtain a longer range and to reach the southern 

area of the bay mentioned before. Data were continuously collected every one 

hour, twenty hours a day during the whole period. For this study, the data were 

filtered using a 33 hour low pass filter in order to remove the tidal and sea breeze 

signals. 

 

2. Spatial Coverage 
Before examining the spatial coverage, it is important to understand the 

basics of the configuration of the system. Although the scattering principle is the 

same for all HF radars, differences are found in the antenna configuration that 

transmit and receive the electromagnetic signals. Five HF antennas are located 

along the Monterey Bay, shown in Figure 2. It is important to mention that the 

geometry of the bay, with a curving coastline with a radius of about 20 Kilometers 

is ideal for the multisite HF radar network. The over-water distance from one 

point to another, in this case from Santa Cruz to Point Piños, is close to the 

typical radar range. When three or more shore locations, which is this case, are 

used, the entire patch of water can be observed without lost coverage along the 

baseline between radar sites. This geometry also makes Monterey Bay well 

suited for validating and developing the algorithm of currents, waves, and wind 

direction because a large ocean region is over sampled. Even though the fifth HF 

antennas are located far south of the Bay, its purpose is to help building current 

map in the south entrance of the Bay. Table 2 shows the position in latitude, 

longitude, and center frequency of all five HF radar antennas. 



Antenna 
Location 

Latitude Longitude Center 
Frequency 

Santa Cruz 360,949217 N 1220,0661 W 12.165  MHz 

Moss 

Landing 

360,803333 N 1210,7883  W 24.649  MHz 

NGPS 360,603233 N 1210,8720  W 13.465  MHz 

Point Piños 360,636783 N 1210,9356  W 13.195  MHz 

    Point Sur    360,30580 N 1210,9013  W 13.467  MHz 

 
Table 2.   Position and Frequencies of HF Radar Antennas along Monterey 

 Bay. 
 

 
Figure 2.   HF Antennas Location around Monterey Bay. 
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3. Vector Surface Current Maps 
A software system named HFRadarmap has been developed at the Naval 

Postgraduate School using MATLAB codes with input from a number of 

additional HF radar users around the world. For this study, the main purpose of 

the HFRadarmap toolbox was to combine HF radar-derived radial currents into 

total current vectors. Also, the program computes statistics on the total current 

data and provides radial and total current animation capabilities. The most 

important goals of the HFRadarmap toolbox are to provide platform independent 

programs that are not specific to any HF hardware and to make them modular 

and flexible and easy to use. The system processing streams basically consist of 

three data products: the backscatter spectrum, or cross spectrum, radial current 

maps, and total current maps. The primary use is to convert radial currents into 

total currents and in this way to view total and radial current animations. Since 

the HFRadarmap software allows the user to process their own total current 

maps, it gives the user the flexibility to vary the parameters, such as the temporal 

or spatial averaging values. It also provides flexibility in plotting and saving the 

total current. 

To get from radial to total vector, it is important to mention that a radial 

current is the component of the total current either directly toward or directly 

away from the measuring HF radar. Two or more collocated, or nearly collocated, 

radial currents can form a system of equations that can be solved for the u and v 

components of the total current.  

 
C. REMOTE SENSING 

1. Satellite AVHRR 
Images from satellite AVHRR were obtained to provide another source of 

information. The following satellite images were obtained from a presentation 

during a second field test for the AOSN (Autonomous Ocean Sampling Network) 

program where researchers gathered at MBARI during the summer of 2003 for a 

month-long experiment to study upwelling features in the Monterey Bay. The 
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original downloading and processing of the sea surface temperature (SST) and 

ocean color images was accomplished by MBARI and UCSC. 

 Figure 3 shows a set of four SST images on different days with a patch of 

low-temperature waters in the northern area entering to the Bay. This is the 

typical development of an upwelling event caused by the wind stress blowing 

continuously from the northwest, resulting in the rise of colder waters from below 

and the replacement warmer surface waters close to the coast. 

Figure 4 depicts a current map from HF radar data of August 10. The wind 

speeds during the time of these observations had some of the largest 

magnitudes during the course of this study associated with the upwelling event 

between August 8 and August 18. The majority of the wind direction is from the 

northwest and the surface currents align with the strong wind blowing toward the 

southeast. Figure 5 shows this major upwelling event developed between August 

8 and August 18 (marked with an arrow) the wind blew continuously from the 

north for at least ten days and the satellite image probably shows the beginning 

of the transport of colder waters from the bottom to the surface. Further analyses 

are discussed in Chapter III, Method and Data Analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
Figure 3.   Satellite AVHRR SST images for August 10, 12, 15 and 20, 2003, 

 respectively. (Courtesy F. Chavez). 
 

20 



 
Figure 4.   HF Radar-Derived Surface Current Map of August 10, 2003. 
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Time Series of wind speed and direction from June 01, 2003 to March 31, 2004

 
Figure 5.   Feather plot of low-pass-filtered wind vectors at the M1 mooring 

 showing major Upwelling events from June to September, 
 including the highlighted period of 8-18 August.  
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2. Aircraft IR 
Data collected from an aircraft were also analyzed. The data was obtained 

in collaboration with CIRPAS, the Center for Interdisciplinary Remotely-Piloted 

Aircraft Studies. This center was established by the Office of Naval Research in 

the spring of 1996 to provide Unmanned Air Vehicle (UAV) flight services to the 

research, development, test and evaluation communities. The Naval 

Postgraduate School’s Center is located at the former Fort Ord’s Frizsche Field 

(Marina Municipal Airport). CIRPAS operates a variety of manned and unmanned 

vehicles; one of those is the Pelican OPV. Pelican was developed to meet an 

optionally piloted aircraft requirement to perform long endurance low-altitude 

atmospheric and oceanographic research and technology development. The 

aircraft is a highly modified Cessna 337/O-2A Skymaster with all the equipment 

and instrumentation necessary to support user requirements. 

Data to construct the SST, wind and reflectance data, were collected at an 

altitude from 30 to 400 m over the Monterey Bay. The following plots (Figures 6, 

7, 8, and 9) depict sea surface temperature from the true trajectory of the plane. 

No gaps are filled out, so the data collected is the real SST from the aircraft path.  

The number above each plot indicates the year, month, and day the data were 

taken. As an example, SST 030713 means Sea Surface Temperature of July 13, 

2003. The analysis of these plots is in Chapter III, Method and Data Analysis. 
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Figure 6.   Sea Surface Temperature Pattern taken from Aircraft in Monterey 
 Bay (August 11and 13, 2003). 
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Figure 7. y 
 

  Sea Surface Temperature Pattern taken from Aircraft in Montere
 Bay (August 15 and 20, 2003). 



 

 
 

Figure 8.   Sea Surface Temperature Pattern taken from Aircraft in Monterey 
 Bay (August 25 and 29, 2003). 
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Figure 9.   Sea Surface Temperature Pattern taken from Aircraft in Monterey 
 Bay (September 8 and 25 , 2003). 
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III. METHOD AND DATA ANALYSIS 

A. HF RADAR MAPPING PROCESS 
Hourly surface currents in Monterey Bay were measured continuously 

from June 1, 2003 to March 31, 2004 by a network of five HF radar antennas of 

the CODAR type. The measurements were averaged over one-hour intervals and 

the total surface velocities were reported on a grid with a uniform spacing of 

about three kilometers. The data used was filtered to eliminate the diurnal and 

semidiurnal tides and local wind variations. Time and space gaps in the radar 

measurements were filled using linear interpolation. The interpolation criterion 

required that data was available at least 75 % of the time. Figure 10 shows the 

total grid coverage in Monterey Bay. Before proceeding to the next step, it is 

necessary to briefly mention some of the concepts involved in the data 

processing. 

The data products produced by the HF radar equipment are cross spectra 

based on the radio wave backscatter, radial current maps derived from the cross 

spectra each hour, and total current maps, as mentioned before. The cross 

spectral data must be processed with a direction finding algorithm to produce a 

radial current map, depending on the type of hardware and on the method used 

to gather the spectrum. Once the raw backscatter data has been converted to a 

radial current map, it is hardware independent. All that is needed to describe a 

radial current would be the location, and the speed and direction of u and v 

components. 

It should be noted that the output radial format of the radial current maps 

for different HF radar manufactures is not standard. There are differences in both 

file formats and in the interpretation of the direction. In some cases movement 

toward the radar site is stored as a positive value while in other cases it is 

considered to be negative. To avoid these issues, the MATLAB-based 

HFRadarmap toolbox developed at NPS produces a standard ASCII format for 

the radial map data. This consists of 1 row of 4 values in the file, the longitude 
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and latitude of i  the radial flow 

expressed as a vector. Using u and v in this way, the position and direction are 

 masked to the right due to the geography of the coast. 

ts location, and the u and v components of

unambiguous. 

As a reminder, a single data station measures only the component of flow 

along a radial beam emanating from the site; therefore, radial current from two or 

more sites must be combined to form the vector surface current. For Monterey 

Bay, five are the sites combined to get the radial vectors for each of the antennas 

sites and finally the mapping of the total current as a result of these five 

antennas. Figure 11 is an example of the radial vector of two antenna sites along 

the bay. The Moss Landing range of the vectors is shorter than the other sites. 

This is because the frequency of the transmission at that site is higher that the 

others (~24 KHz for Moss Landing vs. ~13 KHz for the others); therefore, one 

achieves less range and better resolution. Also the radial vector coverage at 

NPGS site is

Figure 12 is the result of the combination of the radial vector of the 

different antennas. A surface-current map is depicted as a result of the 

combination of more than two sites, which have combined to form the total 

surface. 
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Figure 10.   HF Grid Points Coverage in the Bay and the Antenna Location 
 and M1 Buoy Location. 
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Figure 11.   Examples of Radial Vector of two HF Radar Antenna Sites. First 
 one corresponds to Santa Cruz. The second one to Moss 
 Landing. 
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Figure 12.   Example of Surface Current Maps of Monterey Bay from the HF 
 Radar Network for July 24, 2003 and August 2, 2003 respectively. 
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B. MOORED INFORMATION 
Moored surface wind information was obtained from the MBARI buoy 

positioned at the location named M1 as shown in Figure 10. The other moored 

observations that were analyzed were the information of the u and v velocity 

components from the PISCO Bottom-Fixed ADCP instruments. These 

instruments were located close to Santa Cruz and Point Piños. Table 3 describes 

the location and some characteristics of the instruments. In this study, data from 

Sandhill Bluff was discarded from the analysis because the location was too far 

from the bay. 

The purpose of the analysis of the surface currents obtained from the 

ADCP instruments is to gain another source of information and to relate or to 

compare these results with the results of the total currents vector from the HF 

radar grid points. One must consider that the position of the bottom-fixed ADCPs 

are very close to the shore and the current component computed by the 

instruments were taken from one specific depth “bin” from a total of 22. This was 

done to obtain just the information of u and v components as close to the surface 

as possible. By comparing the ADCP data from all 22 “bins” from the bottom to 

the surface, “bin” number 13 was chosen to be the best available near-surface 

bin. This bin takes the information of the current at approximately four meters 

below the surface. Information from bins closer to the surface was discarded 

because the data were not of sufficient quality due to the tidal and waves 

dynamics and to the direct-path acoustic reflections from the sea surface.  

The data from the bottom-fixed ADCPs cover a period of time that is 

limited compared with the longer HF radar record, as shown in Table 3. Only the 

summer time period was analyzed with respect to the bottom-mounted ADCP 

data.  

When data obtained from the HF radar network and from the bottom-fixed 

ADCP instruments are compared and correlated, it is necessary to point out the 

fact that the position and hor

the same ven

izontal extent of the instrument's coverage are not 

, e  though they may be relatively close together. The differences in 
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s in the velocity data. Another issue is that 

the inf

the positions will lead to real difference

ormation collected by the HF radar antennas were taken from the very skin 

of the water surface (within 1 m) while the data from the ADCP was at about 4 m 

depth. 

 

Name Location Meters above 
Bottom 

Period of 
Collected Data 

Terrace Poi 0nt 122 ,0803 W 

360,9442 N 

20 m July 22 - Sep 22 

2003 

Hopkins Marine 

Site 

1210,8937 W 

360,6091 N 

18 m July 31 - Oct 23 

2003 

Sandhill Bluff 1220,1578 W 

360,9728 N 

18 m July 25 - Oct 28 

2003 

 
Table 3.   Identification of the Bottom-Fixed ADCP Instruments. 

 
C. SATELLITE AND AIRCRAFT DATA  

Figures and plots from Chapter II, Data Collection, depict SST taken from 

aircraft and satellite images. The SST images in Figure 3, show four stages of 

incoming low-temperature waters in the northern area, entering the bay. These 

processes represent the consequence of a sustain wind stress blowing from the 

northwest. A plume of cold waters rises to the surface, replacing warmer waters. 

This is

tress stopped blowing by yearday 232; this is on August 20 as is roughly 

shown

that period.  

 depicted in images dated on August 10, 12 and 15. The last image dated 

on August 20 shows how the cold-water plumes are moving away to the south 

and warmer waters are again appearing in the Bay. This is because the northerly 

wind s

 in Figure 5. Figure 4, a total-current map, shows how the surface current 

flows toward the south, due to the persistent wind depicted in Figure 5. The wind 

blows continuously from the northwest between August 9 and August 19, 2003, 

so the satellite images show one of the major upwelling events that developed in 
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to the Bay to out of the Bay. This is consistent with the satellite images 

showing colder waters covering the Bay during the same period of time. The 

upwel rs are repl er surf  to the ind 

stress. 

ows t f cold wate he uppe r 

plot, dated on August 20, about two days after the wind stop lowing, SST 

becomes warmer again. A relaxation period began for just a few days with a shift 

in the direction, but it was very weak. Figure 8, August 25, shows warm surface 

waters in the entire bay ar  the brief relaxed period, the wind started 

blowing again from the northwest between yearday 238 to 245, according to 

Figure 5. This is from August 26 to September 02, with a re  in the wind 

direction in the middle of the period. The plot below shows again the 

h  o the bay 

e 9 shows in the first plot, relatively 

cold w

Figures 6 to 9 depict the aircraft SST data over the bay. The first of the 

figures, SST from August 11, shows relatively warm temperature around the Bay, 

in the upper plot and two days later, in the lower plot, colder temperatures run 

from in

led wate acing warm ace waters due constant w

Figure 7 sh he continuity o rs in t r plot. In the lowe

ped b

ea. After

versal

c aracteristic f an upwelling situation with cold waters circulating out of 

in the same way as the plot of Figure 7. Figur

ater which probably started to get colder due to another wind stress event 

from the northwest from approximately September 7 to September 12. The last 

plot, September 25, shows warmer waters and is consistent with a period of 

reversal of the wind on that date according to the feather plot of Figure 5. All the 

above descriptions - periods of upwelling, relaxation and reversal of the wind of 

August and September - can be seen in more detail in Figure 13, which depicts 

those events in a stick plot of direction and intensity of the wind for that period.  
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Figure 13.   Wind Speed and Direction of August and September, respective
 at the M1 mooring highlighting major Upwelling Favorable Wind 
 and Reversals Conditions. 
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D. TIME SERIES 
1. Wind Data from the M1 Buoy 
The plots in Figures 14 and 15 show the time series of the wind 

component from the M1 buoy for the period from June 1, 2003 to March 31, 

2004. The wind data were low-pass-filtered in the same manner as the HF radar-

derived surface currents using a Matlab code to eliminate the diurnal wind 
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effects. (One must note that Figure 15 includes four months in the time series of 

the first plot. The two plots below contain three months per plot, so the scale of 

the north-west (pointing to the southeast, according to the stick plot) that 

co

than the erio

conditions. This is more noticeable dur e spring, summer and the beginning 

of fall (from mid-June to late November). After this period, clear winter events are 

shown from mid-December to February. Relaxation periods are quite brief, 

lasting just a few days, even just hours, until the wind shifts to another direction. 

 MATLAB program was created to analyze the behavior of the surface 

current related to the wind stress using the M1 Buoy wind data and relating this 

information with the data from HF radar maps through the use of conditional 

averaging. The main idea is based on knowing the different wind conditions and 

then determining what the surface currents looks like under certain types of wind 

intensity and direction. For example, how do the currents respond after a main 

wind event taking into account the wind speed and direction plus the duration of 

that condition? The MATLAB program works by identifying the times of the wind 

record that meet the user’s specified conditions. The user is allowed to input an 

angle wedge, minimum current speed, duration of this condition, and number of 

hours after the event starts and a stop-time to end the event. The winds meeting 

the feather plot from one row to the other is different.)  

 From Figure 14, which depicts the time series of the whole period, the 

different events of upwelling condition, relaxation periods, and reversals of the 

wind with downwelling condition are clear. The wind stress lasting for a certain 

period of time is interrupted by a shorter period of relaxation. Winds blowing from 

rrespond to the upwelling favorable wind conditions are much more notorious 

p ds of wind blowing in the opposite direction or downwelling 

ing lat

A
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determine the times for which to average the HF total 

curren The ick plot indicating wind speed and 

directio

wind record and pick the 

wind o

 

series,

these criteria are used to 

ts.  resulting output includes a st

n during the selected time periods and maps of the conditionally averaged 

HF radar-derived surface currents along with their standard deviation and 

standard errors of the mean.   

As an example: The wind is blowing at 5 m/s or more in an angle between 

2700 to 3500 and the time to wait before the program starts averaging current 

maps is set to 24 hours. The latter waiting period is referred to as the spin-up 

time. In this example the program would search the 

bservation times for which the wind was blowing 5 m/s or more in the 

selected angle range. It will then eliminate those wind events whose duration is 

less than the specified spin-up time. So, in this example, an event must have 24 

hours in the speed and direction conditions before times are selected for 

averaging the HF radar maps. The event cutoff time is the first time after the 

spin-up time for which the speed and direction conditions fail to be met.  Then the 

program picks all the current maps that fall in event periods and averages them 

together. The goals of this analysis are to try to identify recurring surface current 

patterns and to determine how long it takes for the surface current patterns to 

respond to changes in the wind stress forcing. 

 From Figures 14 and 15, which show the ten-month vector wind time

 the main events related to upwelling favorable wind conditions and to 

downwelling or relaxation periods are depicted. However, to help make an 

objective decision about which are the major events during the ten-month period 

of this study, histograms of the speed and direction of the winds at the M1 buoy 

are depicted in Figures 16 and 17. In terms of wind direction, the lower panel of 

Figure 16 and the wind rose in Figure 17 clearly show the predominance of 

upwelling favorable winds blowing from about 310 degrees. Wind speeds were 

observed to vary more broadly from about 1 m/sec to 9 m/sec with peak 

occurrences around 3 m/sec. 
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Figure 14.   Wind Speed and Direction from M1 Buoy from June 01, 2003
 March 31, 2004. 
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Figure 15.   Wind Speed a

 

nd Direction from M1 Buoy separated by month 
 periods. 
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Figure 16.   Wind Intensity and Direction Histogram of the Period of June 1, 

 2003 to March 31, 3004. 
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Figure 17.   Wind Direction Rose Histogram (bins depicts direction of the 

 incoming wind). 
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2. HF Radar Map  
Several different wind conditions were chosen to analyze with respect to 

the surface current response to the wind stress and wind stress variability. These 

several case study events are depicted in Figures 18 to 33. In each figure, there 

are three separate plots. The first one corresponds to the wind intensity and 

direction of the whole period. The darkly colored vector time periods represent 

the times when the particular user-input conditions, the minimum wind speed, the 

wind direction, and the spinup time, were met by the observed winds. The 

second plot depicts the conditional mean of the surface currents during all of the 

selected times based on the wind criteria. The third plot shows the conditional 

standard error of the mean defined by: 

    Standard error = 
2

/ 33
sd

N
×

  

 where: = Standard deviation 

    = Number of samples. 

pass filter use er the number of hourly current maps 

included in the averages the lower is the standard error. As a result the setting of 

a certain condition of wind speed, wedge angle, and spinup time results in a low 

number of observation times that meet the criteria, then the standard error would 

be bigger than if the conditions are met more often.  

Analysis of the different conditions: 

a. Upwelling 
Most upwelling favorable wind occurs with the wind blowing from 

the northwest, as shown in Figure 14 and Figure 15. From the histograms of 

Figure 16 and 17 most of the direction of the wind comes from 3100–3200. Since 

all major events should be represented, the angle wedge used was between 

3000 - 3500. A wider angle range was chosen to give more chances of upwelling 

wi

sd

N

The total number of hourly samples is divided by 33 because of the low-

 d on the data. The great

nds conditions. The minimum wind intensity was set to be 4 m/s. With this 
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angle and wind speed, we select the most obvious features in the HF radar 

curren

Spinup:  
12 hrs 

Cutoff: 
 24 hrs 

t maps.  

The spin up time for most of the cases was set at 12 to 24 and 48 

hours. Again, this means that for this condition, the wind will be blowing 

uninterrupted at a minimum of 4 m/s from a wedge angle between 3000 - 3500 

and for a period of time of 12 to 24 or 48 hours before averaging of the current 

maps is begun.  Averaging is maintained until the cutoff time when the observed 

winds drop below the minimum wind speed or move outside the prescribed angle 

wedge. 

 

Case 1: Wind from the NW 
Angle wedge: 

3000- 3500

Min. wind speed: 
4m/s 

 

 For this condition, represented in Figure 18, there are several 

events

but in the shore areas it is uncertain how the surface current responds to the 

wind. I eak cyclonic circulation is forming off 

Moss Landing

 

 that fulfill this criterion. The events are indicated by the darkly colored 

wind vectors on the first plot. The conditional mean map, which is the average of 

the surface current response after 12 hours of the condition achievement, shows 

a clear current flowing toward the south at the entrance of the bay, which is 

intense in the northern area with speeds of about 25 cm/s. The surface current 

aligns generally with the wind in the offshore areas. This happens very quickly, 

n the area closer to the coast, a w

. 

Case 2- 3: Wind from the NW 
Angle wedge: 

3000- 3500

Min. wind speed: 
4m/s 

Spinup:  
24 hrs 

Cutoff: 
 48- 96 hrs 

 

Figures 19 and 20 represent two additional case studies related to 

wind from the NW. In these cases, the parameters are the same as in case 1 
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urs for cases 2 and 3, respectively.. As expected, the total 

numbers of t

Now, closer to the coastline in the middle of the bay, it is clear how 

ell developed the cyclonic circulation is. The main result that is illustrated in 

e wind blows longer, the intensity of the circulation 

form thern is strong

 

except that the spin-up time is increased to 24 hours and the cut-off time is 48 

hours or 96 ho

ime events that match these criteria are less than for case 1. The 

numbers of darkly colored vectors on the feather plots are smaller because the 

conditions are more restricted. With a 24 hour same wind condition (i.e., spin-up 

time), the surface current out of the bay is much stronger, 30 to 35 cm/s. In the 

northern area, the direction is more into the bay than the previous, case-1 

condition for which the spin-up time was only 12 hours. 

 

w

these figures, is that when th

ed in the nor  area of the Bay er.   

Case 4-5: Wind from the NW 

Angle wedge: 

3000- 3500

Min. wind speed: 
4m/s 

Spinup: 

48 hrs 

Cutoff: 

72- 96 hrs 

 

 Figures 21 and 22 depict the third condition of upwelling favorable 

winds. Now the spinup time is for a period of 48 hours and cutoff time is 72 hours 

and 96 hours for cases 4 and 5, respectively. The feather plots now show even 

fewer events that fulfill the prescribed conditions. The number of darkly colored 

vector times is smaller, but wider, because the time of the wind blowing with the 

condition is longer. Higher intensity of the current tends to bend more coastward 

 the south area of the bay. The cyclonic circulation in the middle of the Bay 

 developed under these averaging conditions. 

 very  the HF a, the cyclon lation 

formed in the north area of the bay after a constant wind from the north-west is 

the bay and the pressure field that builds up, 

because of t

in

close to the coastline is now fully

 At a  long average of radar dat ic circu

probably due to the shape of 

he wind forcing which moves the waters against the coast. The 
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geostrophic balance promotes the formation of a cyclonic gyre.  It takes about 48 

hours, or about 2 inertial periods to set up completely. 

Case 6-7-8: Wind from the NW 

Angle wedge: 

3200- 0400   3250- 0450   
3300- 0500      

 

Min. wind speed: 
4m/s 

Spinup: 

18 hrs 

Cutoff: 

72 hrs 

 

 Figures 23, 24 and 25 show three interesting cases. The wind 

intensity, spin up and cutoff time were not changed. However, the direction of the 

wind was set at three different angles wedges shifted northward by just five 

degrees. The differences of the surface current patterns for these situations are 

notorious. In the first case, for an angle-wedge between 320 and 040, the flow is 

toward the south and a cyclonic circulation starts forming inside the bay, although 

not yet well developed. For the second case, with the angle wedge between 325 

and 045, the cyclonic circulation is now almo eveloped a cond 

circulation is observed forming out of the Bay with a strong flow in or 

the third case, the angle of the wind is between 330 and 050; two well developed 

gyres e sho

st fully d nd a se

between. F

ar wn in the surface current map. One is a cyclonic one into the Bay 

and another is an anticyclonic one at the entrance to the Bay. A strong current 

flows between these two circulations with higher intensity in the southern area of 

the bay.  The interesting situation here is that for these conditions the surface 

current is more sensitive to the wind direction than to the intensity. With just a 

slight change in the wind direction of just 10 degrees from one scenario to 

another, two well developed gyre with opposite circulations were formed in a 

relatively small area. 

 
b. Downwelling 
Downwelling occurs with much less frequency than upwelling. That 

is the reason it is not possible to show what would happen when the wind blows 

in the same long time period for downwelling events. Most downwelling favorable 
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gure 16 and 17, it is clear 

how l ences of these events. The stronger 

downwelling-favorable conditions occur mostly during winter, which makes sense 

because this matches the period of the fall-winter storms from late October to 

Febru

Like the previous cases, since we want to represent the major 

events the angle wedge chosen was between 900 and 1800 degrees, and the 

minimu  win

wind occurs with the wind blowing from the southeast, between 900 and 1800, as 

shown in Figures 14 and 15. From the histogram of Fi

ow are the number of occurr

ary.  

m d intensity again was set at 4 m/s. With this angle and wind speed, 

the most recurring features in the HF radar current maps are shown in the 

following plots. 

Case 1: Wind from the SE 
Angle wedge: 

900- 1800

Min. wind speed: 
4m/s 

Spinup:  
12 hrs 

Cutoff: 
 24 hrs 

 

The first plot of Figure 26 shows the main events developed from 

late October to mid-February. Ten to eleven events occurred that matched the 

prescribed conditions. The second plot, the conditional mean, shows that the 

surface currents flow toward the north at the entrance of the bay, with a stronger 

intensity in the south. At the coastline, the flow tends to align with it. 

Case 2: Wind from the SE 
Angle wedge: 

900- 1800

Min. wind speed: 
4m/s 

Spinup:  
24 hrs 

Cutoff: 
 96 hrs 

 

Figure 27 represents the second condition under which the spin-up 

time is increased from 12 hours to 24 hours. Three main events are depicted in 

the feather pl nd the other two in late February. For this 

case, the lon

ot, one in late December a

ger spin-up time yields results that are almost the same as the 

previous case, but with fewer events. The only difference is the intensity of the 

current, which is stronger due to the longer time of the wind blowing. Again, close 
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So far cases of upwelling and downwelling have been analyzed, but 

this method 

ind from the NE 
Ang d: Spinup:  Cutoff: 

 24 rs 

to the coastline, the flow tends to go out of the Bay. The standard error depicted 

in the lower of the plots, for this case, is greater due to the fewer number of 

current maps under these prescribed conditions. 

 

c. Other Circulations 

of analysis has shown that there are other wind effects on the 

surface current patterns when the winds blow from other directions. There are 

anticyclonic circulations in the middle of the bay, strong flows out of and into the 

bay in the southern area close to Point Piños, and other types of circulations. 

Case 1: W
le wedge: Min. wind spee

0000- 900 4m/s 12-24 hrs -48-96 h

 

Figures 28, 29, 30 and 31 represent these conditions. The first 

condition with

 the Bay off 

Point P fter flowing out of the bay. If the cutoff now is 

48 eragi rs after the condition has been achieved - 

the anticyclonic circulation starts moving more into the bay an cond 

irculation is forming besides this one, out of the bay. The strong flow in the 

southern area

 a spin-up time of 12 and a cutoff of 24 hours is shown in Figure 28. 

The feather plot shows that this condition occurs from mid-November to late 

December. The second plot, conditional mean of the current maps, shows the 

beginning of the formation of a weak anticyclonic circulation out of the Bay. A 

strong circulation flows toward the west in the southern portion of

iños and turns to the south a

hours - the av ng starts 24 hou

d a se

c

 remains the same. The next plots have the same wind speed, but 

now they have a spinup of 24 hours instead of 12 and with a longer period of 

average. It is clear the fully developed anticyclonic gyre is in the middle of the 

bay. For the cutoff of 96 hours, the error depicted on the third plot is less than the 

previous one (48 hours cutoff). For this condition, one can see how well 
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Angle wedg : 
1800- 270

Min. wind speed: Spinup:  
12 hrs 

Cutoff: 
 24-60 hrs 

developed the circulation is. The stronger the wind stress for longer periods of 

time, the more remarkable the spin of the circulation formed in the bay is.  

Case 2: Wind from the SW 
e

0 4m/s 

 

. It 

was not possible to find periods longer that 12 hours with a wind speed of 4 m/s 

and w goe toward the northeast in the south area. 

Unfor the conditiona dard error fo tion is qu  is 

hard to determine what the real influence of the wind blowing from this direction 

on the current patterns is. This situation is associated with a cyclonic circulation 

out of the bay. This was also demonstrated

For this case, the wind is blowing from 1800 to 2700 . Figures 32 

and 33 represent another case that is interesting to point out. This is when the 

wind is blowing from the southwest, which mostly happens during the winter, but 

the time that the wind blows continuously from this direction is not very long

 up. The flo s into the bay 

l stantunately r this situa ite high, so it

 by seeing several current maps from 

the HFRadarmap code named “currentviewer,” which gathers the data of the 

whole period. One example of one of these maps is shown in Figure 34 from 

August 21, 2003. 
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Figure 18. Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 300 and 350 degrees, Spin-up Time of 
 12 hours, and Cut-off Time of 24 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 19.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 300 and 350 degrees, Spin-up Time of 
 12 hours, and Cut-off Time of 48 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 20.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 300 and 350 degrees, Spin-up Time of 
 24 hours, and Cut-off Time of 96 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 21.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 300 and 350 degrees, Spin-up Time of 
 48 hours, and Cut-off Time of 72 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 

50 



200 250 300 350 400 450

10 m/s10 m/s

Time (yearday, 2003)  

51 

 

 
Figure 22.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 300 and 350 degrees, Spin-up Time of 
 48 hours, and Cut-off Time of 96 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 23.   Wind Time Periods meeting the criteria of Speed greater than 4 
 m/sec, Direction between 320 and 040 degrees, Spin-up Time of 
 18 hours, and Cut-off Time of 72 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure .   

tandard Error (lower) of the Surface 
 Current during these times. 

 
24 Wind Time Periods meeting the criteria of Speed greater than 4 
 m/sec, Direction between 325 and 045 degrees, Spin-up Time of 
 18 hours, and Cut-off Time of 72 hours (dark vectors; upper) and 
 the Average (middle) and S
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Figure 25. the criteria of Speed greater than 4 
 m/sec, Direction between 330 and 050 degrees, Spin-up Time of 

 
 

 18 hours, and Cut-off Time of 72 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 26.   Wind Time Periods meeting the criteria of Speed greater than 4 
 m/sec, Direction between 90 and 180 degrees, Spin-up Time of 12 
 hours, and Cut-off Time of 24 hours (dark vectors; upper) and the 
 Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 27. Wind Time Periods meeting the criteria of Speed greater than 4    
 m/sec, Direction between 90 and 180 degrees, Spin-up Time of 24 
 hours, and Cut-off Time of 96 hours (dark vectors; upper) and the 
 Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 28. Wind Time Periods meeting the criteria of Speed greater than 4 

 

   
 m/sec, Direction between 000 and 90 degrees, Spin-up Time of 
 12 hours, and Cut-off Time of 24 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 29.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 000 and 90 degrees, Spin-up Time of 
 12 hours, and Cut-off Time of 48 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 30.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 000 and 90 degrees, Spin-up Time of 
 24 hours, and Cut-off Time of 48 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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Figure 31.   Wind Time Periods meeting the criteria of Speed greater than 4 

 m/sec, Direction between 000 and 90 degrees, Spin-up Time of 
 24 hours, and Cut-off Time of 96 hours (dark vectors; upper) and 
 the Average (middle) and Standard Error (lower) of the Surface 
 Current during these times. 
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  Wind Time Periods meeting the criteria of Speed greater than 4 Figure 32. 

 m/sec, Direction between 180 and 270 degrees, Spin-up Time of 
 12  hours, and Cut-off Time of 24 hours (dark vectors; upper) 
 and the  Average (middle) and Standard Error (lower) of the 
 Surface  Current during these times. 
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Figure 

 

33.   Wind Time Periods meeting the criteria of Speed greater than 4 
 m/sec, Direction between 180 and 270 degrees, Spin-up Time of 
 12  hours, and Cut-off Time of 60 hours (dark vectors; upper) 
 and the  Average (middle) and Standard Error (lower) of the 
 Surface  Current during these times. 
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Figure 34.   HF Current map of August 21, 2003. 

 
 
 
3. 

erey Bay surface 

 

adar-derived current 

ry close to the 

coastline ta

 

 

the goal of

other times it reverses without following obvious changes in wind forcing. 

A m re 

sets is the ue

ADCP fro  the it rent? The existence of 

Bottom-Fixed ADCP and HF Radar Grids  
One of the interesting unknown details about the Mont

current circulation is the current patterns very close to the shore and how they

relate to the larger-scale patterns observed in the HF r

maps. For this reason, an investigation of current observations ve

ken by the PISCO program was incorporated into this study. Two 

sites were selected: Hopkins and Terrace point, in the south and in the north 

area of the Bay, respectively. To be able to predict when or why the circulation is

in or out of the Bay for the coastal areas nearby Hopkins and Terrace Point was

 the following analysis. Sometimes the circulation is clockwise and at 

o specific question that can be addressed with the available data 

 q stion of how far offshore is the current measured by bottom-fixed 

m  Hopkins s e or the Terrace Point site cohe

63 



64 

the HF radar-derived surface current maps provides the possibility to answer this 

question. Difficulties result when one tries to compare the HF radar-derived 

currents 2-3 km from shore with the currents observed very close (less than 1 

km) to shore at the Hopkins or Terrace Point locations. Rather than assume a 

one-to-one correspondence between the offshore currents and the near-coastal 

currents, the HF radar data were used to relate the pattern information in the 

large-scale flow field to the events observed at the coastal sites. For example, 

different HF grid points were selected quite far away from the Hopkins ADCP in 

order to describe the sense of flow in that area. Before describing the results, it is 

necessary to point out how the current components from the different HF radar 

grid points were selected. 

 

a. HF Grid Point information 
There are a total of 328 HF radar total vector grid points within the 

Bay fo med 

antennas. Following the total vector mapping step, u and v components can be 

extract ind . Figure 35 shows the 

locatio

shown 

previously that the strongest speed intensity is at the entrance of the bay in the 

southe

r by the overlapping of radial current observations from the five 

ed ependently for each one of these grid points

n of six different HF grid points chosen between the M1 Buoy and the 

Hopkins coastal site. Figure 36 depicts the u and v component of all six grid 

points. This was done to see how well correlated u and v components are 

between the different grid points close together. The plot in these figures show 

the differences in the intensity of the current with higher values for the negative 

components. The v component is stronger than u, and it has the maximum 

strength between Julian days 230 and 235 ( this is from August 18 to August 24), 

one or two days after the end of one of the main upwelling periods. The grid point 

located more to the west, indicates stronger u and v velocity than the grid points 

located to the east or more into the bay. The current maps have 

rn area. Despite the variations in magnitude, the events are highly 

correlated across all six HF radar grid points shown in the figures. 



Figures 37 and 38 show the direction and intensity information from 

the HF radar grid points as vector feather plots. From these feather plots, it is 

clear how the current intensity decays from west to east, with maximum 

magnitudes at the first HF radar grid point outside the entrance to the bay. 
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Figure 35.   Identification of the Grid Points between M1 Buoy and Hopk
 Site. 
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Figure 36.   U component of six different HF grid points between M1 Buoy and 
 Hopkins site. 
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Figure 37.   Feather plot of surface current of HF grid points 260,275,289. 

 

 
 

Figure 38.   Feather plot of surface current of HF grid points 216,232, 247. 
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b. Bottom-Fixed ADCP  
The data from two bottom-fixed ADCP were used for the present 

study. Data from a third location, Sandhill Bluff, was discarded because it is 

located too far away from the entrance of the bay and is not very useful for the 

analysis. Data from the Hopkins site and Terrace Point were analyzed. The data 

from these sites were also filtered with the same low-pass filter used for the HF 

radar-derived surface current maps. 

Figures 39 and 40 show the position of both bottom-fixed ADCPs 

and the corresponding closest HF radar grid points. For comparison purposes, 

the first panels of Figures 41 and 42 show the intensity and direction of the 

current in a feather plot for Terrace Point and Hopkins sites, respectively. 

Because of the location of it these instruments, very close to the shore with an 

average depth of just 20 m, it is difficult to accurately estimate the surface current 

a 

which is consistent with the coastline for each of the two sites, can be estimated. 

From the first plot of Figure 41, Terrace Point, it is clear how the 

surface current aligns to the coastline. According to this plot, most of the flow is 

out of the bay, but from the second plot of the same figure, the current from the 

HF radar grid points have almost equal negative and positive components. The 

intensity is also different. The data from the HF grid point is stronger than the one 

from the ADCP; however four major peaks are coincidental for both. These are  

between yeardays 210 and 215, 218 and 220, 225 and 230 and 237 and 240. 

Grid points 178 and 195 correlate better to the ADCP data, which makes sense 

since both are the closest ones to the instrument position. 

At both near-coastal ADCP locations the current directions are 

observed to be nearly rectilinear with flow moving in one of two directions parallel 

to the coastline. Clearly the flow at those locations is not free to move in any 

direction. However, the velocity records each contain obvious events for which 

the near-coastal flow reverses or changes its magnitude significantly. These 

ev

short distance from these sites. However, the direction of the surface current 

ents can be expected to also be present in the offshore HF radar-derived  
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current patterns, although not necessarily in an obvious way.  One way to 

highlight the 

gure 41 suggest that the alongshore flow at 

the Terrace P

site ADCP da

ents.  However since 

the first one o

the bay near the chosen radar grid points and out of the bay close to Hopkins. As 

events in the near-coastal ADCP data is to rotate the vector currents 

into the alongshore direction and then to extract the scalar alongshore 

component for comparisons with various velocity components from the HF radar 

grid. For the data from the Hopkins site, this was done by rotating the current 

vector by 40 degrees. 

The results shown in Fi

oint site is well correlated with the east-west flow just offshore at 

several of the HF radar grid points. The HF radar data, however, indicate 

changes in sign of the east-west flow at some locations during some events. This 

is explained below using observations of the larger-scale surface current patterns 

from the entire HF radar grid. 

The results shown in Figure 42 attempt to relate the near-coastal 

observations at the Hopkins site to the offshore surface currents at several HF 

radar grid points. The rotated alongshore current components from the Hopkins 

ta are presented in the third panel of Figure 42 along with the east-

west components from several nearby HF radar grid locations. From the feather 

plot of Figure 42, three major events can be identified. The first is around 

yearday 215. The second one is yearday 233 and the third one yearday 245. If 

we compare these events with the wind record of Figure 10 showing the details 

of the wind direction and intensity during August and September, those periods 

corresponds to periods of relaxation. The latest two events coincides with the 

end of two upwelling events. So it is likely that these two peaks in the ADCP 

record represent the near-coastal response to these 2 ev

f the peaks at yearday 215 does not coincide with any major event, 

it is hard to make any connection between the wind stress and the current 

pattern close to Hopkins point. From the time series plots, however, it can be 

seen that the near-coastal flow component is in the opposite direction compared 

with the flow at the HF radar grid points in terms of whether the flow is entering or 

leaving Monterey Bay. This can be explained by assuming that the flow goes into 
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ay, it is seen to be near a convergence point along the 

coastline for 

to extract that information with only the ADCP time 

series. 

a result, it can be inferred that during the major event periods a small clockwise 

circulation cell forms in the southern part of the bay. 

Figure 43 depicts two surface current maps from the HF radar 

network that help to interpret the results of the time series comparisons with the 

near-coastal ADCP observations. With regard to the Terrace Point location at the 

northern end of the b

which flow is often leaving the bay to the east of Terrace Point and 

entering the bay to the west of Terrace Point with the flow ultimately joining the 

strong southward current that forms across the mouth of the bay under 

upwelling-favorable wind conditions. Hence, the single-point measurement at 

Terrace Point does contain information about the larger-scale circulation in the 

region, but it would be difficult 

With regard to the Hopkins location, the two surface current pattern 

examples in Figure 43 show that the near-coastal flow at that site can be both in 

phase with the offshore currents under some upwelling conditions or it can be in 

the opposite direction as the flow a few kilometers offshore due to the presence 

of a small anticyclonic circulation cell in the southern portion of Monterey Bay.  In 

this case, the time series presented in Figure 42 suggest that the out-of-phase, 

circulation cell configuration is the more commonly occurring situation for 

southern Monterey Bay. 
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Figure 39.   Location of HF grid points below Terrace Point.  

 

 
Figure 40.   Location of HF grid points close to Hopkins. 
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Figure 41.   First plot depicts intensity and direction of u component at     

 Terrace Point. Second one, shows the comparison of u    
 component of Terrace Point and the different u components from 
 the HF grid points. 
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Figure 42.   First plot depicts intensity and direction or surface current of   
 Hopkins point. Second one, shows the comparison of non rotated 
 u component of Hopkins and closest HF radar grid points and the 
 third plot shows rotated u component and same HF radar grid 
 points. 
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Figure 3.   

 

4 Surface Current map indicating the sense of the flow in Hopkins 
 and Terrace site. 
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IV. DISCUSSION AND RESULTS  

A. WINDS EFFECTS 
 Winds in Monterey Bay often fluctuate between persistent periods of 

upwelling favorable conditions and brief periods of relaxation with a shift in the 

wind direction. In this study, coastal wind fields were observed from June, 2003 

to March, 2004. Northerly winds predominated in summer to mid-fall with a 

reversal in the typical wind direction in late fall and winter. The periods of 

persistent upwelling favorable winds, wind blowing toward the southeast, 

occurred primarily during summer from late June to late October. These 

upwelling periods often lasted between five to ten days, even longer on some 

occasions, with speeds of about four to five m/s. These periods were interrupted 

by brief relaxations of the winds lasting just one to three days, sometimes less, 

and with winds shifting to the northeast or northwest with weaker intensity. 

During the upwelling periods, the typical circulation in the Bay consisted of a 

cyclonic circulation on shore sometimes accompanied with an anticyclonic 

circulation in the offshore area. When the wind stress was sustained for a longer 

period, the cyclonic circulation was more fully developed. The strongest currents 

were observed in the southern part of the bay, off Point Piños.  

Downwelling events were more infrequent than the upwelling. These 

events start in late November until late February with duration between two to 

five days. The wind direction was often toward the northwest, with stronger 

intensity than the upwelling periods but for shorter times. In these periods, the 

wind stress relaxes and cooler upwelled water starts to sink and become 

replaced by warmer waters. 

Other wind directions were also analyzed. These however are much less 

common. Wind blows from the northeast and from the southwest, often during 

late summer and fall with short duration and low intensity but with important 

inf

 

luences on the surface current patterns. 
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B. OCEAN CU NT
Surface current patterns around Monterey Bay have strong variability that 

 temporal and spatial scales. During upwelling and 

ry sensitive to a 

small 

5 to 30 cm/s and slowing down when entering the 

bay. W

rtheast, the current flows into the bay 

off Point Piños and then turns to the left, following the coastline. 

RRE  PATTERN RECOGNITION 

is well separated in terms of its

downwelling conditions the surface current generally aligns with the wind in the 

offshore areas. The flow responds almost immediately (i.e., within hours) to the 

wind stress. This result is, at least, partially related to the fact that the HF radar 

systems calculate the speed of the skin of the water, probably less than one 

meter in depth, so the observed response of the surface current to the wind 

stress happens very quickly. In shore areas within the 1-3 km resolution of the 

HF radar network, the current responses are uncertain. The current meter 

records analyzed in this study from the PISCO project were deployed only a few 

hundred meters from the shore in 15-20 m water depths. Because of the 

closeness to the coastline, those currents were observed to flow predominantly 

alongshore. 

During upwelling conditions, the wind speed and direction time series 

exhibit long duration events, which tend to spin up counterclockwise circulations 

in the middle of the bay. This circulation becomes stronger when the period of 

the event is longer. For a specific condition of the wind direction, this is when it 

blows from the north (3200 to 0500), the surface current is ve

change in the direction between or close to that angle-wedge without 

changing the wind intensity. This sensitivity refers to the intensity of gyres that 

are formed in the bay.  

During downwelling, the current patterns align very well off shore and tend 

to align with the coastline inshore. The surface current is stronger out of the bay 

reaching a speed of about 2

hen the wind blows from the southwest, the current flows into the bay in 

the northern area and then veers to the left, aligning with the coastline. A weak 

counterclockwise circulation forms into the bay and a second one out of the bay. 

When the wind shifts and blows from the no
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period up to 24 hours, a 

clockw

ring upwelling favorable wind conditions, a small clockwise gyre 

forms 

When the wind blows from the northeast, for a 

ise circulation forms in the middle of the bay and a strong current flushes 

out of the bay off Point Piños. When southwest winds occur, often during 

summer and fall for a brief period and with weak intensity, a well developed 

anticyclonic gyre forms in the middle of the bay, flushing out a strong current in 

the northern areas with intensities of about 30 cm/s. 

The two areas close to the shore that were also analyzed, Hopkins and 

Terrace point, must be investigated with special care due to their proximity to the 

coastline. The alongshore flow at the Hopkins site has negative sign indicating 

flow moving out of the bay during most of the analysis period, which corresponds 

to upwelling favorable wind conditions.  But further north, on the HF radar grid 

points close to the Hopkins site, the flows had positive sign—goes into the Bay. 

According to this, it can be inferred that when the wind blows from the north-

northwest du

in that area, probably due to the geographic characteristics of that area. 

At Terrace Point, the area where the bottom-fixed ADCP was located is an 

area where the surface currents tend to converge during upwelling favorable 

winds as can be seen in Figure 43. Generally, where the ADCP was located the 

flow moved out of the bay during the time of the analysis. Further south, where 

the line of six HF grid points were selected and the flow had both positive and 

negative sign, the flow moved into the Bay in the western area and out of the bay 

in the eastern area. 
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V. CONCLUSIONS  

his study investigated the patterns of surface ocean currents in Monterey 

Bay ov g which continuous, hourly observations 

were available from a 5-site HF radar network.  Continuous observations of 

offshore winds were also available from the M1 mooring maintained by MBARI.  

These records made it possible to describe the common current patterns under a 

variety of wind conditions.  In all cases, both the surface current and near-surface 

wind data were low-pass-filtered to remove diurnal-period fluctuations, which 

means that the patterns investigated in this study are related to the low-

frequency variations in the wind forcing. The most important of these variations is 

the cycling between upwelling favorable alongshore winds and shorter periods of 

relaxed or downwelling favorable winds.  This cycling is dominant from spring 

through fall. Only in the winter period do  events, which can have 

wind directions oth

 areas close to the shore, such as the Hopkins and Terrace Point 

locations studied here in the southern and northern portions of Monterey Bay, 

respectively, the currents are confined to flow alongshore. It is possible to relate 

the near-coastal currents to the larger surface current patterns, although the 

relationships would not be obvious from the near-coastal records alone.  In the 

southern example, the offshore flow tends to be opposite to the near-coastal flow 

due to a small circulation cell that appears to form in the southeastern portion of 

Monterey Bay.  Along the northern coastline near Terrace Point, the flow is 

correlated with the offshore flow observed by the HF radar network but the 

correlation is degraded because the flow offshore of that site is often observed to 

be convergent in terms of the east-west (or cross shore) flow direction. 

The MATLAB-based HFRadarmap toolbox was an excellent tool for 

computing and mapping the surface current in the Monterey Bay over the long 

term and in real time. The toolbox extension developed in this project, namely the 

program used to perform conditional averaging of the surface currents based on 

T

er a period of ten months durin

 strong synoptic

er than alongshore, dominate in this region. 

In
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specified conditions on the s, and durations, was 

very informative. Given the long records, it was possible to create significant 

averag

oreline.  Even for 

the mo

observed wind speeds, direction

e surface current maps that were based on ensemble realizations over 

several different events. This was particularly true for the dominant upwelling 

favorable wind conditions for which it was shown that cyclonic circulation inside 

Monterey Bay forms within a day of the onset of upwelling winds.  Furthermore, if 

those winds persist for more than a day, it was shown that the circulation pattern 

becomes more intense and well defined.  In the converse situation during the 

shorter-duration downwelling winds, the surface currents were seen to respond 

quickly to the new forcing and to set up reversed, northward-flowing currents, 

particularly in the region across the mouth of Monterey Bay. 

Finally, less well represented wind conditions, such as winds blowing 

toward the southwest, were shown to produce interesting surface current 

patterns. These include rare but potentially important “flushing events” for which 

strong currents move water out of the bay along the southern sh

re common conditions in which winds were observed to blow toward the 

south, the conditional averaging employed in this study showed that the surface 

current patterns that develop can be very sensitive to wind direction.  A change 

of just 5-10 degrees in wind direction was shown to be enough to produce a well-

developed, two-gyre system in one case and not in the other. 

It is recommended that the conditional averaging approach used in this 

study be extended to longer time series and, possibly, to other test records, such 

as winds from additional mooring sites or the near-coastal currents provided by 

the PISCO project. It is through the combined use of single-point indices and the 

two-dimensional maps from HF radar that the maximum benefit of the unique HF 

radar data can be realized. 

 

 



81 

Drake, P., UCSC PISCO, 1999: Subtidal Physical Oceanography File Naming 
Conve

Lynn, 
Seaso

senfeld, 1996: Remotely sensed surface currents in 
adar (Coastal Ocean Dynamics Application 

Radar). J. Geophys. Res., 101, 20669-20686. 

Pickard, G.L., and W. J. Emery, 1964: Descriptive Physical Oceanography. Fifth 
Edition, Pergamon, Press, Oxford, 320 pp. 

 

LIST OF REFERENCES 

Breaker, L. C., and W. W. Broenkow, 1994: The Circulation of Monterey and 
related processes. Oceanography and Marine Biology: an Annual Review, 32. 1-
64. 

Chavez, F. P., Herlien, R. and Thurmond, G., 1997: Real time experimental 
moorings: An OASIS in Monterey Bay, California. Web Site: 
http://www.mbari.org/bog/Projects/MOOS/oasis/oasis. 

Cook, M. S., Paduan, J. D., 1999: Processing HF radar Data using the 
HFRadarmap Software System. Technical Report, 15 pp. 

Codar Ocean Sensors, Ltd. Web site: http://www.codaros.com. 

ntion and Data Processing, UCSC Technical Report, 14 pp. 

Emery, W. J. and R.E. Thomson, 2001: Data Analysis Methods in Physical 
Oceanography. Second and Revised Edition, Elsevier Press, Amsterdam, 638 
pp. 

Ferziger, J.H., and Tseng Y.H., 2003: Numerical Simulation of Regional 
Circulation in the Monterey Bay Region. Web Site; 
http://ctr.stanford.edu/ResBriefs03/yhtseng.pdf. 

Hickey, B. M., 1998: Coastal Oceanography of western North America, from the 
tip of Baja California to Vancouver Island. In: The Sea, Vol 11, Willey, J., New 
York, 1062 pp. 

R. J., and J. J. Simpson, 1987: The California Current System: The 
nal Variability of its Physical Characteristics. J. Geophys. Res., 92, 12947-

12966. 

MBARI-BOG, 1999: A ten-year time series from Monterey Bay, California: 
Seasonal, interannual and long-term patterns. Web site: 
http://www.mbari.org/bog/Projects. 

Paduan, J. D., and L. K. Ro
Monterey Bay from shore-based HF r



82 

Ramp, S. R, L. K. Ros . Hicks, 1997: Moored 
observations of the current er the continental slope 
off California: A basic description of the variability. J. Geophys. Res.,102,  22877-

from an upwelling center: a cold water source for Monterey Bay. Continental 

losophical Society, 29. 

enfeld, T. D. Tisch, and M.R
and temperature structure ov

22902. 

Rosenfeld, L. K. F. B. Schwing, N. Garfield, and D. E. Tracy, 1994: Bifurcated 
flow 
Shelf Res., 14 No. 9. 931-964. 

Smith, Jr., Albert A., 1998: Radio Frequency Principles and Applications. IEEE 
Press, New York, 219 pp. 

Skogsberg, T., 1936: Hydrography of Monterey Bay, California. Thermal 
conditions, 1929-1933. Transactions of the American Phi
1-152. 

Strub, P. T., J. S. Allen, A. Huyer, and R. L. Smith, 1987: Seasonal Cycles of 
Currents, Temperatures, Winds and Sea Level over the Northeast Pacific 
Continental Shelf: 350 N to 480 N., J. Geophy. Res., 92.1507-1526. 

Tomczak, M., and J. Stuart Godfrey, 2003: Regional Oceanography: An 
Introduction. Pergamon Press, Oxford, 422 pp. 

 

 

 

 

 



83 

udley Knox Library 

graduate School 

Department of Oceanography 

 
. Mr. Mike Cook 

Department of Oceanography 
Naval Postgraduate School 
Monterey, CA  
 

. Mr. Fred Bahr 
Department of Oceanography 
Naval Postgraduate School 
Monterey, CA  
 

7. Dr. Leslie Rosenfeld 
Department of Oceanography 
Naval Postgraduate School 
Monterey, CA  

INITIAL DISTRIBUTION LIST 

1. D
Naval Postgraduate School 
Monterey, CA  
 

2. Dr. Jeffrey Paduan 
Department of Oceanography 
Naval Postgraduate School 
Monterey, CA  
 

3. Dr. Mary Batteen 
Department of Oceanography 
Naval Post
Monterey, CA  
 

4. Dr. Curtis Collins 

Naval Postgraduate School 
Monterey, CA  

5

6


	I. INTRODUCTION
	A. BACKGROUND
	1. Large-Scale Circulation
	2. Monterey Bay Circulation
	3. Wind Pattern
	4. Upwelling

	B. HIGH-FREQUENCY RADAR
	1. Characteristics
	CODAR
	Uses


	II. DATA COLLECTION
	A. MOORED
	1. Wind data
	2. Ocean Data

	B. HF RADAR DATA
	1. Temporal Coverage
	Spatial Coverage
	3. Vector Surface Current Maps

	C. REMOTE SENSING
	1. Satellite AVHRR
	2. Aircraft IR


	III. METHOD AND DATA ANALYSIS
	A. HF RADAR MAPPING PROCESS
	B. MOORED INFORMATION
	C. SATELLITE AND AIRCRAFT DATA
	D. TIME SERIES
	1. Wind Data from the M1 Buoy
	2. HF Radar Map
	a. Upwelling
	b. Downwelling
	c. Other Circulations

	Bottom-Fixed ADCP and HF Radar Grids
	a. HF Grid Point information
	b. Bottom-Fixed ADCP



	IV. DISCUSSION AND RESULTS
	A. WINDS EFFECTS
	B. OCEAN CURRENT PATTERN RECOGNITION

	V. CONCLUSIONS
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

